Cambridge International AS \& A Level

BIOLOGY

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {M }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.

2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.

3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).

4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' guidance
For questions that require \boldsymbol{n} responses (e.g. State two reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked ignore in the mark scheme should not count towards \boldsymbol{n}.
- Incorrect responses should not be awarded credit but will still count towards \boldsymbol{n}.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should not be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first \boldsymbol{n} responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, unless the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^{n}$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations
Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.
State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Examples of how to apply the list rule

State three reasons.... [3]

1. Correct	\checkmark	
2. Correct	\checkmark	2
3. Wrong	x	

1. Correct, Correct	\checkmark, \checkmark	
2. Correct	\checkmark	3
3. Wrong	ignore	

C (4 responses)	1. Correct	\checkmark	
	2. Correct, Wrong	\checkmark, \mathbf{x}	$\mathbf{2}$
	3. Correct	ignore	

E
(4 responses)

(4 responses)	1. Correct	\checkmark	2
	2. Correct	\checkmark	
	3. Correct CON (of 3.)	(discount 3)	

G	1. Correct	\checkmark	3
(5 responses)	2. Correct	\checkmark	
	3. Correct Correct CON (of 4.)	ignore ignore	

H	1. Correct	\checkmark	
(4 responses)	2. Correct	\mathbf{x}	$\mathbf{2}$
	3. CON (of 2.) Correct	(discount 2) \checkmark	

1
(4 responses)

1. Correct	\checkmark	
2. Correct	\times	2
3. Correct CON (of 2.)	\checkmark (discount 2)	

Mark scheme abbreviations

;	separates marking points I			
alternative answers for the same point				
R reject		\quad	accept (for answers correctly cued by the question, or by extra guidance)	
:---	:---			
A	alternative wording (where responses vary more than usual)			
AW	actual word given must be used by candidate (grammatical variants accepted) underline indicates the maximum number of marks that can be given			
max	or reverse argument			
ora	marking point (with relevant number)			
mp	error carried forward			
ecf	ignore			

Question	Answer	Marks
1(a)	idea of: grinding with sand to break open the cells / release enzyme ; filtering through cloth to remove, sand / debris / AW ;	$\mathbf{2}$
1(b)(i)	(idea that result / it, is) quantitative / AW ;	$\mathbf{1}$
1(b)(ii)	independent variable: concentration of catechol / substrate ; dependent variable : absorbance (on colorimeter) ;	$\mathbf{2}$

Question	Answer	Marks
1(c)(i)	any eight from: 1 ref. to preparing / using, at least five dilutions concentrations of catechol ; 2 stated range of at least five concentrations from 1\% downwards with $\%$ units ; 3 method of keeping catechol oxidase / enzyme solution / banana extract cold ; 4 idea of bringing enzyme and substrate to temperature / equilibrating, before mixing ; 5 method of keeping reactants / reaction mixture, at, constant / controlled / stated / standardised, temperature ; 6 same / constant / stated / standardised / known, volume / concentration / mass of, Y / inhibitor ; 7 same / constant / stated / standardised / known, volume of, catechol / substrate ; 8 same / constant / stated / standardised / known, volume / concentration, of catechol oxidase / enzyme / banana extract ; 9 ref. to measuring absorbance / intensity of colour (on colorimeter) after one set time ; 10 additional detail of use of colorimeter ; 11 repeat at least twice / three replicates, $\underline{\text { and }}$ calculate mean; 12 idea of repeating, whole experiment / range of concentrations, without, $\mathrm{Y} /$ inhibitor ; 13 named hazard and risk and precaution ;	8
1(c)(ii)	curve should be to the right of the original curve ; curve should plateau below the original curve ;	2
1(c)(iii)	correct placement of $\mathrm{V}_{\max }$ and K_{m};	2
1(c)(iv)	(reaction with non-competitive inhibitor) has same K_{m} value than with no inhibitor ;	1

Question	Answer	Marks
1(d)	any three from: 1 combination of drugs gives a larger reduction in blood pressure ; 2 no error bars; 3 no, statistical test / t-test, done to compare groups ; 4 no data on long term results ; 5 AVP ; ; any two from: - no information on blood pressure prior to trial - no information on type of blood pressure - no information on number of patients in each group - no data on side effects - ref. to reduction in blood pressure brought about by the placebo alone - no data on, age / gender	3

Question	Answer				Marks
2(a)(i)	any one from: idea of compare / AW, observed and expected (data / results / ratios / phenotypes) ; or data is, categoric / discrete / discontinuous / nominal ;				1
2(a)(ii)	idea of no (significant) difference between the observed and the expected (results) ; or idea of difference between observed and expected (results) is due to chance;				1
2(a)(iii)	offspring phenotype	0	E	$\frac{(O-E)^{2}}{E}$	3
	wrinkled wings rosy eyes	44	$\begin{gathered} 36 \\ (36.000) \end{gathered}$	$\begin{gathered} 1.78 \\ (1.77778) \end{gathered}$	
	wrinkled wings red eyes	2	$\begin{gathered} 12 \\ (12.000) \end{gathered}$	$\begin{gathered} 8.33 \\ (8.33333) \end{gathered}$	
	normal wings rosy eyes	2	$\begin{gathered} 12 \\ (12.000) \end{gathered}$	$\begin{gathered} 8.33 \\ (8.33333) \end{gathered}$	
	normal wings red eyes	16	$\begin{gathered} 4 ; \\ (4.000) \end{gathered}$	$\begin{gathered} 36.00 \text {; } \\ (36.00000) \end{gathered}$	
	$\chi^{2}=$			$\begin{gathered} 54.44 ; \\ (54.44444) \end{gathered}$	
	apply ecf as needed				
2(a)(iv)	$\mathrm{n}-1$ and probability of 0.05 / one less degree of freedom than number of categories and probability of 0.05 ;				1

| Question | Answer |
| :---: | :--- | :--- |
| $2(\mathrm{a})(\mathrm{v})$ | apply ecf as needed
 $\mathbf{1} \quad$ reject (null hypothesis) and state that, the calculated value / χ^{2}, is higher than, $7.82 /$ the critical value ;
 $\mathbf{2} \quad$ If null hypothesis rejected:
 (between O and E): there is a significant difference / the difference is not due to chance
 idea that there is a less than 5 \% probability that the difference is due to chance / there is a more than 95\% probability that
 the difference is not due to chance ;
 $\mathbf{3} \quad$ From mp1 If null hypothesis rejected or mp2 If there is a significant difference / AW, stated
 idea that: genes, are on the same chromosome / are not on different chromosomes / are linked / show autosomal
 linkage / do not assort independently;
 A idea of, 'may be / can be', throughout mp3 |

